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Agenda

▪ general introduction to NN and their application for safety critical 
use cases 

▪ potential problems in the application of NN

▪ options to improve the safety of NN
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Neural Network basics
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Basic principles of NN

A neural network is a series of functions that attempt to recognize underlying relationships in a set of data

𝑓 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3 + …+ 𝑧𝑥𝑛

where a … z are the weights of the network and x1 … xn are the neurons
=> the goal is to optimize the weights
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Basic principles of NN – training a network

1

feed data into the network
that has meaning for us

2

network produces output
we can measure
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measure the distance 
between true meaning and 
output

loss function = true meaning – output
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Basic principles of NN – training a network

4

Us the power of calculus
to calculate gradients to 
reduce the difference
between true meaning and 
output
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Examples of safety critical application of NN

Autonomous vehicles Robotics

Aerospace Rail

Image sources: 
GE;  machinedesign; calaero; singaporeair

- detect drivable path 
- detect surrounding objects
- predict trajectories of 

other vehicles

- Obstacle detection
- Detect persons at railroad crossing
- detect people around street cars
- Diagnosis tasks (defects of rail infrastructure)
- Checkpoints (support of defect 

detection like hot brakes, loose 
cargo, ….

- detect human co-workers
- AMR obstacle detection

- Fault diagnosis
- high performance auto piloting 
- Pilot supervision (detection of 

unsafe actions  or distraction)
- Air traffic management
- UAV (Unmanned Air Vehicle) 

object avoidance

https://www.ge.com/news/reports/3-1b-collaborative-co-bot-market-isnt-hazard-free
https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age
http://calaero.edu/the-airplane-transponder/
https://www.singaporeair.com/en_UK/us/plan-travel/intercity-transfers/rail-fly/
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Example use cases for rail vehicles
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Example use of ML 

▪ Rolling stock (wagon) monitoring (more
efficient checkpoints using cameras)

• Like hot brakes detection, loose cargo, …

▪ Railroad crossing observation (early abnormality detection like 
occupied tracks – especially if no bars present) 

▪Optimizing schedule 
& anticipation of 
irregularities

Checkpoint for supervision of rolling stock

Rail crossing

Railroad crossing monitoring possible
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Main Rail / Subway Automation 
Grade of Automation – Functions Needed
▪Object detection on 

track (abnormal 
situations)

▪ Passenger 
observation

▪ Emergency situation 
detection

▪…
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Infrastructure 

▪ Infrastructure monitoring

• Broken tracks, damaged basis, … 

▪ Positioning of train (improve location for different use cases)

• Use less reference points like (balises - milestones for train reference points)

• Initial position detection after “wakeup” 

• General positioning of train
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Potential problems in the application of 
NN
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Possible 
methods:

Inappropriate data, e.g. relevant
samples missing

Incoming data noisy; Model biased, poor architecture Poor SW/HW implementation Platform fault during runtime

Dataset selection or augmentation,
optimized training

Uncertainty estimation (aleatoric, epistemic)
Augmentation and dropout during training

Network optimization (e.g. quantization) Platform fault-tolerance

Example 
problem:

Data „Ideal“ model

Model 

implementation 

(fault-free)

Model 

implementation 

(with faults)

Techniques to establish resilience against platform errors, on a SW level, at inference time. 
High relevance for safety-critical AI use cases, Intel use cases

potential problems in the application of NN
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options to improve the safety of NN
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subtopics to cover:
• robust multimodal fusion

• HW fault mitigation

• plausibility checks

• uncertainty analysis
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Object detection
Object detection

Object detection

Object detection
Object detection

Object detection

Tracker
Tracker

Tracker

Tracker
Tracker

Tracker
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Trajectory 

Prediction (others)

Trajectory 

planning (own)

Actuation

AI Hardware

Robuste 3D 

multimodale

fusion

uncertainty estimation

Plausibilitäts-Checks

HW fault mitigation 

options to improve the safety of NN
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1) Robust multi-modal fusion

Objective: minimize the influence of faulty sensors.

Causes of faults: 
• Wear
• external interferences
• Hardware or software faults

State of the Art:
• Combination of multiple sensor types improves accuracy of predictions -> methods, however, 

usually expect error-free sensor data
• generation of 3D object detections often only with one modality
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1) Our Method

• Combination of 2 modalities camera and lidar, both of which can detect objects in 3D 
independently or combined. If one modality does not provide data, object detection can still be 
performed

• In addition, the system was made more robust by data augmentation (A) and sensor dropout (D) 
during training

• J. Jarquin Arroyo et al, “A Fault-Tolerant Multimodal 3D Object Detection

• Network”, pending conference submission 2022.
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1) Train for robustness against faults

Applied Data Augmentation (A) during training

Lidar
• Point noise
• Point erasing

Camera
• Image noise
• Image erasing
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1) Selected Results

Lidar: Improvement over PointPillars and 
PointPillars + Augmentation

Camera: improvement over stereo network 
and stereo network + augmentation
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2) Hardware fault 
mitigation

Hoang et al, 2019

Li et al, 2017

Di Martino et al, 2014

Blue Waters supercomputer
Failure root causes

Silent data corruption (SDC)

Fault model:
• Bit flip or stuck-at-0/1 faults
• Permanent/transient errors
• Network neurons (activations) or weights

F. Geissler, Q. Syed, S. Roychowdhury, A. Asgari, Y. Peng, A. Dhamasia, R. Graefe, K. Pattabiraman, and M. Paulitsch, 
„Towards a Safety Case for Hardware Fault Tolerance in Convolutional Neural Networks Using Activation Range Supervision”,
AISafety workshop 2021
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Chen et al, 2020

Corrupted feature map

Chen et al 2020 (“Ranger”)
Li et al, 2017
Geissler et al., 20212) Error Detection & Mitigation

Ranger: Detect and contain faulty values by ranger 
monitoring and truncation

Novelties:
- Extended methods of range supervision beyond value 

truncation
- Fine-granular fault injection (neuron/weight, 

transient/permanent) using our own tool (Pytorch-ALFI)
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With RangerNo Ranger

Example: Neuron fault
Setup
Model: Yolov3 (pretrained on Coco)
Dataset: Custom P++ (50 images)
Injections: 1000
Fault model: Weights/Neurons, 
permanent stuck-at-1
Metric: SDC = change in any of TP, 
FP, FN
Result: SDC (No ranger → ranger):
• 1.4% → 0.0% (neurons);
• 2.7% → 0.9% (weights)

No fault

Fault

True positives (TP)

False positives (FP)

False negatives (FN)

Bounding box color code
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Sensor Sensor

Detection, tracker, 
basic perception

Sensor placement 
and (re-) 

configuration
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Fused objects with plausibility Sensor faults

Sensor metadata

Existence estimation

Assign belief mass

Multi-sensor association

Dempster-Shafer fusion

Plausibility 
checks

Plausible History

Road topography
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A priori rules

Physical parameter 
boundaries

Risk event rate, motion 
planning etc.

3) Plausibility checking

Implausible: Inconsistent detections

Implausible: Object velocity w.r.t. class

Implausible: Object history/trajectory

F. Geissler, A. Unnervik, and M. Paulitsch, „A Plausibility-based Fault Detection Method for High-level Fusion Perception Systems“, 
Open Journal of Intelligent transportation systems, 2020
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ω𝐵𝑆

1

2
Fault: Sensor blind 
spot (corrupted due to dirt/dust/water etc.)

3) Example: Detecting 
sensor faults from 
plausibility signatures

Signature: Increased miss ratio of sensor 1 (compared to 2) and 
reduced probability existence estimate (=plausibility score)
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Aleatoric uncertainty

The irreducible uncertainty in data that gives rise to uncertainty in predictions is aleatoric 

uncertainty (also known as data uncertainty).This type of uncertainty is not a property of the 

model, but rather is an inherent property of the data distribution, and hence, it is irreducible.

Epistemic uncertainty

In contrast, epistemic uncertainty (also known as knowledge uncertainty) occurs due to 

inadequate knowledge. One can define models to answer different questions in model-based 

prediction.

4) Uncertainty analysis –
Epistemic and Aleatoric uncertainty

M. Abdar et al., “A review of uncertainty quantification in deep learning: Techniques, 
applications and challenges,” Inf. Fusion, vol. 76, pp. 243–297, Dec. 2021, doi: 
10.1016/j.inffus.2021.05.008.
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▪ Sampling based refers to methods where several outputs are produced for 

the same input using these to create a likelihood distribution e.g. a 

gaussian with mean and standard deviation

▪ The main classes of methods are:

• Bayesian methods where static weights are replaced with distributions from which values 

are drawn for each pass producing slightly different results each time for the same input.[1]

• Monte Carlo Dropout where connections or neurons are randomly dropped to create slightly 

different results each pass. This method is also used in training to reduce overfitting of 

models[2]

• Deep Ensembles where slightly differently trained networks are run in parallel and produce 

different results in that way. Monte Carlo Dropout and Deep Ensembles can also be 

combined in that the different ensemble members are created by dropout.[3]

4) sampling based methods

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight Uncertainty in Neural Networks,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 2, pp. 1613–1622, May 2015, doi: 
10.48550/arxiv.1505.05424.
[2] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of 
uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297. https://doi.org/10.1016/j.inffus.2021.05.008
[3] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Advances in Neural Information Processing 
Systems, 2017-December, 6403–6414. https://doi.org/10.48550/arxiv.1612.01474
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▪ Sampling free methods allow to create a confidence score in a single pass 

during inference

▪ The main types are:

• Aleatoric Uncertainty Estimation via Redundancy uses the fact that current state-of-the-

art object detectors already produce a set of object observations for the classification and 

their bounding boxes. In this way probability distributions for position and size of bounding 

boxes can be calculated in a single pass.[1]

• Learned Confidence Estimates learns the confidence values by incentivising the neural 

network to produce confidence estimates which correctly reflect the ability of the model to 

produce correct predictions for given inputs in exchange for a reduction in loss. 

A variant of this is called Loss Attenuation where additional output vectors are appended 

to each anchor in object detection.[2]

• Deterministic Uncertainty Quantification builds upon ideas of Radial Basis Function 

(RBF) networks. By enforcing detectability of changes in the input using a gradient penalty, 

it is able to reliably detect out of distribution data. It trains centroids per class and measures 

confidence scores as distance to these centroids. 

4) sampling free methods

[1] Le, M. T., Diehl, F., Brunner, T., & Knoll, A. (2018). Uncertainty Estimation for Deep Neural Object Detectors in Safety-Critical Applications. IEEE Conference on Intelligent Transportation 
Systems, Proceedings, ITSC. https://doi.org/10.1109/ITSC.2018.8569637
[2] T. DeVries and G. W. Taylor, “Learning Confidence for Out-of-Distribution Detection in Neural Networks,” Feb. 2018, doi: 10.48550/arxiv.1802.04865.
[3] T. DeVries and G. W. Taylor, “Learning Confidence for Out-of-Distribution Detection in Neural Networks,” Feb. 2018, doi: 10.48550/arxiv.1802.04865.
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4) Uncertainty-aware trajectory prediction

Density Estimator (Likelihood Model) *[Codevilla et al., ICRA 2018]

Input: Static Features with Time-
dependent Features 

Target Vehicle

Agent Vehicle

DNN
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4) Error Aligned Uncertainty Optimization

• N. Kose, R. Krishnan, A. Dhamasia, O. Tickoo, M. Paulitsch, “Error aligned uncertainty 

optimization to improve model calibration”, will be submitted to either British Machine 

Vision Conference (BMVC) or European Conference on Computer Vision (ECCVW), 2022.
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Thanks for you attention!

For additional question please contact

Intel Deutschland GmbH

ralf.graefe@intel.com

michael.paulitsch@intel.com

heiner.genzken@intel.com

mailto:ralf.graefe@intel.com
mailto:michael.paulitsch@intel.com
mailto:heiner.genzken@intel.com
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