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» general introduction to NN and their application for safety critical
use cases

* potential problems in the application of NN

= options to improve the safety of NN
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Neural Network basics
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Basic principles of NN

A neural network is a series of functions that attempt to recognize underlying relationships in a set of data

A simple neural network

input hidden output
layer layer layer

A

f=axqy+bx, +cx3+ ...+ zx,

where a ... z are the weights of the network and x1 ... xn are the neurons
=> the goal is to optimize the weights

Department or Event Name |nte|®

5



Basic principles of NN — training a network

“Emmors
A cane s
re= o @Rk sE

feed data into the network m
that has meaning for us
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0,6

network produces output o

we can measure 0’2
) 1 .

Cat Dog Bird

measure the distance
between true meaning and
output

loss function = true meaning — output
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Basic principles of NN — training a network

J(w) / _—— Gradient

Us the power of calculus
to calculate gradients to
reduce the difference
between true meaning and

Global cost minimum

_— Jmin(w)

output -
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start over
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Examples of safety critical application of NN

- detect human co-workers
- AMR obstacle detection

- detectdrivable path

- detect surrounding objects

- predict trajectories of
other vehicles

- Obstacle detection

- Detect persons at railroad crossing

- detect people around street cars

- Diagnosis tasks (defects of rail infras

- Checkpoints (support of defect
detection like hot brakes, loose
cargo, ....

- Fault diagnosis

- high performance auto piloting

- Pilot supervision (detection of
unsafe actions or distraction)

- Air traffic management

- UAV (Unmanned Air Vehicle)
object avoidance

Image sources:
GE; machinedesign; calaero; singaporeair
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https://www.ge.com/news/reports/3-1b-collaborative-co-bot-market-isnt-hazard-free
https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensor-vehicle-awareness-in-the-selfdriving-age
http://calaero.edu/the-airplane-transponder/
https://www.singaporeair.com/en_UK/us/plan-travel/intercity-transfers/rail-fly/

-xample use cases for rail vehicles
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Example use of ML

» Rolling stock (wagon) monitoring (more
efficient checkpoints using cameras)

* Like hot brakes detection, loose cargo, ...
Checkpoint for supervision of rolling stock

= Railroad crossing observation (early abnormality detection like
occupied tracks — especially if no bars present)

= Optimizing schedule
& anticipation of
irregularities
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Main Rail / Subway Automation
Grade of Automation — Functions Needed |

* Object detection on
track (abnormal
situations)

" Passenger
observation

* Emergency situation
detection

Department or Event Name
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Non- Semi-
On-sight Driverless |Unattended
Basic functions of train operation 9" | Automated | Automated | ©"
GOAD GOoA1 GOA2 GODA3 GOA4
Ops Staff
Ensure safe route Systems Systems Systems Systems
Ensure safe movement of trains Ensure safe separation of trains Ops Staff Systems Systems Systems Systems
Ops Staff
Ensure safe speed Ops Staff Systems Systems Systems
Dirive traim Control acceleration and braking Ops Staff Ops Staff Systems Systems Systems
) Prevent collision with obstacles Ops Staff Ops Staff Ops Staff Systems Systemns
Supervise guideway =

Pravent collision with persons on tracks| Ops Staff Ops Staff Ops Staff Systems Systems
Control passengers doors Ops Staff Ops Staft Qps Staff Ops Staff Syslems

. Frevent injuries 1o persons between ;
Supervise passenger transfer cars or between platform and train Ops Staff Ops Staff Ops Staff Ops Staff Systems
Ensure safe starting conditions Ops Staff Ops Staff Ops Staff Ops Staff Systems
Ooerate a train Put in or take out of operation Ops Staff Ops Staff Ops Staff Ops Staff Systems
pe Supenvise the status of the train Ops Staff Dps Staff Ops Staff Ops Staff Systems
. detection and t Eﬁtecttll;;e{srpﬁg and detect derailment, Systems
g supervision) inOCC

Systems (including CBTC) assume responsibility for more functions
intel.




Infrastructure

» [nfrastructure monitoring
* Broken tracks, damaged basis, ...

= Positioning of train (improve location for different use cases)
» Use less reference points like (balises - milestones for train reference points)
* Initial position detection after “wakeup”

* General positioning of train

intel.
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Potential problems in the application of
NN
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potential problems in the application of NN

Example
problem:

Possible

methods:
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Jldeal“ model

Model
implementation
(fault-free)

QGRG0

Model
Implementation
(with faults)

Inappropriate data, e.g. relevant
samples missing

Incoming data noisy; Model biased, poor architecture

Poor SW/HW implementation

Platform fault during runtime

Dataset selection or augmentation,
optimized training

Uncertainty estimation (aleatoric, epistemic)
Augmentation and dropout during training

Network optimization (e.g. quantization)

Platform fault-tolerance

Techniques to establish resilience against platform errors, on a SW level, at inference time.
High relevance for safety-critical Al use cases, Intel use cases
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options to improve the safety of NN
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subtopics to cover:

* robust multimodal fusion
* HW fault mitigation
* plausibility checks

* uncertainty analysis
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options to improve the safety of NN

Robuste 3D
multimodale

fusion

uncertainty estimation

(GO(? Ohiert AdAatartinn Tracker
@Cé)(? Ohiert dateartinn Trackar
O@ Object detection Tracker

Trajectory
Prediction (others)

Trajectory

planning (own)

Ohiart datartinn Traclker

o Ohiart datartinn Tracker Plausibilitats-Checks

. Object detection Tracker
\# HW fault mitigation

. 17
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1) Robust multi-modal fusion

Objective: minimize the influence of faulty sensors.

Causes of faults:

e Wear

» external interferences
 Hardware or software faults

State of the Art:

* Combination of multiple sensor types improves accuracy of predictions -> methods, however,
usually expect error-free sensor data

« generation of 3D object detections often only with one modality

Intel Labs | The Future Begins Here |nte|® 18



1) Our Method

« Combination of 2 modalities camera and lidar, both of which can detect objects in 3D
independently or combined. If one modality does not provide data, object detection can still be
performed

* In addition, the system was made more robust by data augmentation (A) and sensor dropout (D)
during training

BEV Features
Feature

Extraction i Fusion
— (P—|Detection

i Network

- —

Depth Supervision
Feature P P

J. Jarquin Arroyo et al, “A Fault-Tolerant Multimodal 3D Object Detection .
Intel Labs | The Future Begins Here +  Network”, pending conference submission 2022. intel. 19




1) Train for robustness against faults

Applied Data Augmentation (A) during training

Lidar Camera
* Point noise * Image noise
* Point erasing * Image erasing
Point noise Point erasing Image noise Image erasing

Intel Labs | The Future Begins Here |nte|® 20
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1) Selected Results

accuracy
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0.0 0.2 0.4

0.6 0.8 1.0
level of point noise

Lidar: Improvement over PointPillars and
PointPillars + Augmentation

Intel Labs | The Future Begins Here

0.0

L e—y

B ——

0.2 0.4 0.6 . 0.8
level of image noise

model

<~ StereoNetwork
----- StereoNetwork + A
—— MultiModal + A + D

Camera: improvement over stereo network

and stereo network + augmentation

intel.
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2) Hardware fault
Ion

Mitigat

Blue Waters supercomputer
Failure root causes

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Unknown 2.9%

Heartbeat
20.8%

Hardware
42.1%

Environment
3.2%

All
categories

Di Martino et al, 2014

Soft
erro

Weight bits

to be mapped
0(1]0(0
0O(1]0(0
1/0[(1]0
O(0|1[1

% Mapping to

r memory

[1]1]o]o0 |
01|00
1101110 Permanent Lietal, 2017
0[0]1 d fault
Hoang et al, 2019 [ Silent data corruption (SDC) ]

Fault model:

Intel Labs | The Future Begins Here

Bit flip or stuck-at-0/1 faults
Permanent/transient errors
Network neurons (activations) or weights

F. Geissler, Q. Syed, S. Roychowdhury, A. Asgari, Y. Peng, A. Dhamasia, R. Graefe, K. Pattabiraman, and M. Paulitsch,
»1Towards a Safety Case for Hardware Fault Tolerance in Convolutional Neural Networks Using Activation Range Supervision”, inte|®
AlSafety workshop 2021
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Chen et al 2020 (“Ranger”)

Lietal, 2017

2) Error Detection & Mitigation

Chen et al, 2020

Correct classification
(fault-free)

Mis-classification
(fault occurs)

Correct classification
(fault occurs)

L1 L2 Output

* Signficant error :
: (result in SDC) | | (tolerated b

Insignificant error
y DNN and not result in SDC) !

Ranger: Detect and contain faulty values by ranger
monitoring and truncation

Intel Labs | The Future Begins Here

Corrupted feature map

Convl

No fault
(a) No protection (b) No
:
) - 50 -

9
@

-

Relu E =
Ranger
MaxPool
Ranger

Conv2

Relu
Ranger
MaxPool
Ranger

Reshape

Activation magnitudes

Ranger
FCi

Relu

Ranger
FC2
Relu

Ranger

FC3

012 3 45 6 7 8 9 01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9

Classes

/Novelties:

Extended methods of range supervision beyond value
truncation
Fine-granular fault injection (neuron/weight,

transient/permanent) using our own tool (Pytorch—ALFI)/

\
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Setup
Model: Yolov3 (pretrained on Coco)

Dataset: Custom P++ (50 images)
Injections: 1000

Fault model: Weights/Neurons,
permanent stuck-at-1

Metric: SDC = change in any of TP,
FP, FN

Result: SDC (No ranger = ranger):
* 1.4% - 0.0% (neurons);

* 2.7% > 0.9% (weights)

No fault

Bounding box color code

M True positives (TP)

No Ranger

TP: 11, FP: 4, FN: O

Example: Neuron fault

With Ranger

TP: 11, FP: 4, FN: O

M False positives (FP)
M False negatives (FN)

Intel Labs | The Future Begins Here
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3) Plausibility checking

Risk event rate, motion
planning etc.

m°°“\e
Plausible History

>

E Dempster-Shafer fusion
3 o i

TC:._§ Multi-sensor association
.%_ c 1

§ Assign belief mass

g t

Existence estimation

Detection, tracker,
basic perception

Sensor Sensor

Sensor-level
processing

Intel Labs | The Future Begins Here

Sensor faults

Plausibility
checks

A 4

Sensor placement
and (re-)
configuration

Road topography

A priori rules

Physical parameter
boundaries

Sensor metadata

Sensor

F. Geissler, A. Unnervik, and M. Paulitsch, , A Plausibility-based Fault Detection Method for High-level Fusion Perception Systems*, .
Open Journal of Intelligent transportation systems, 2020 |

Implausible: Object velocity w.r.t. class

ntel. =



3) Example: Detecting
sensor faults from

plausibility signatures

Fault: Sensor blind /
spot (corrupted due to dirt/dust/water etc.)

Signature: Increased miss ratio of sensor 1 (compared to 2) and
reduced probability existence estimate (=plausibility score)\
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4) Uncertainty analysis —
Epistemic and Aleatoric uncertainty

Aleatoric uncertainty

The irreducible uncertainty in data that gives rise to uncertainty in predictions is aleatoric
uncertainty (also known as data uncertainty).This type of uncertainty is not a property of the
model, but rather is an inherent property of the data distribution, and hence, it is irreducible.

Epistemic uncertainty

In contrast, epistemic uncertainty (also known as knowledge uncertainty) occurs due to
inadequate knowledge. One can define models to answer different questions in model-based
prediction.

M. Abdar et al., “A review of uncertainty quantification in deep learning: Techniques,
applications and challenges,” Inf. Fusion, vol. 76, pp. 243-297, Dec. 2021, doi:
10.1016/j.inffus.2021.05.008. -5

Aleatoric

-

L

o
) . :
* Epistemic

Department or Event Name 0 2 K 6 8 10 12
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4) sampling based methods

» Sampling based refers to methods where several outputs are produced for
the same input using these to create a likelihood distribution e.g. a
gaussian with mean and standard deviation

= The main classes of methods are: el ==
A
» Bayesian methods where static weights are replaced with distributions from which values 0K g9 |
are drawn for each pass producing slightly different results each time for the same input.[1] b)) QDO
@@

« Monte Carlo Dropout where connections or neurons are randomly dropped to create slightly
different results each pass. This method is also used in training to reduce overfitting of
models[2]

« Deep Ensembles where slightly differently trained networks are run in parallel and produce
different results in that way. Monte Carlo Dropout and Deep Ensembles can also be
combined in that the different ensemble members are created by dropout.[3]

(u, 02)

[1] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight Uncertainty in Neural Networks,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 2, pp. 1613-1622, May 2015, doi:
10.48550/arxiv.1505.05424.

[2] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R.,, Makarenkov, V., & Nahavandi, S. (2021). A review of
uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243-297. https://doi.org/10.1016/.inffus.2021.05.008

[3] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Advances in Neural Information Processing
Systems, 2017-December, 6403-6414. https://doi.org/10.48550/arxiv.1612.01474



4) sampling free methods

= Sampling free methods allow to create a confidence score in a single pass
during inference

* The main types are:

« Aleatoric Uncertainty Estimation via Redundancy uses the fact that current state-of-the-
art object detectors already produce a set of object observations for the classification and
their bounding boxes. In this way probability distributions for position and size of bounding
boxes can be calculated in a single pass.[1]

+ Learned Confidence Estimates learns the confidence values by incentivising the neural
network to produce confidence estimates which correctly reflect the ability of the model to :
produce correct predictions for given inputs in exchange for a reduction in loss. ——
A variant of this is called Loss Attenuation where additional output vectors are appended
to each anchor in object detection.[2]

Cat
Prediction
I —e 1)
L =exp 3
Bird

« Deterministic Uncertainty Quantification builds upon ideas of Radial Basis Function "
(RBF) networks. By enforcing detectability of changes in the input using a gradient penalty,
it is able to reliably detect out of distribution data. It trains centroids per class and measures
confidence scores as distance to these centroids.

[1] Le, M. T., Diehl, F., Brunner, T., & Knoll, A. (2018). Uncertainty Estimation for Deep Neural Object Detectors in Safety-Critical Applications. IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC. https://doi.org/10.1109/ITSC.2018.8569637

[2] T. DeVries and G. W. Taylor, “Learning Confidence for Out-of-Distribution Detection in Neural Networks,” Feb. 2018, doi: 10.48550/arxiv.1802.04865.

[3] T. DeVries and G. W. Taylor, “Learning Confidence for Out-of-Distribution Detection in Neural Networks,” Feb. 2018, doi: 10.48550/arxiv.1802.04865.



4) Uncertainty-aware trajectory prediction

smmmd DNN —>=
Agent Vehicle

Input: Static Features with Time-
dependent Features

Encoder Decoder

dloc dloc l
Input 2D CNN

z SCa SC
B8 Gru 11 B 4 B R, d E + O
I-

(Mobilenet-v2)

Density Estimator (Likelihood Model)
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4) Error Aligned Uncertainty Optimization

180
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Baseline model
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== == m=  Ground Truth Trajectory 200 - -
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220 1

I - = - -
s Top 3 Predicted Trajectories ;3 -

- R —— 5 secs
Target Vehicle ( ) 240 | ADE oy, pyue, pink = [4-27 ,2.86, 4.20]

550 1| Cred ble, pink = [118.6, 117.9, 114.9]

g T T SRR
— \ = Uncertainty-aware |

160 180 200 220 240 260 280 300

Model . .
Agent Our model (trained with secondary EaUC loss)
Vehicles 289

190 A1

200 TR
160 180 200 220 240 260 280 300 210
Input: Static and Time-dependent Features e
230 1

2401 ADE 4 uco, = [1:57 ;16280183
250 - cred, blue, pink = [1 1 3-3, 107.4, 106-3]

260

160 180 200 220 240 260 280 300

* N.Kose, R. Krishnan, A. Dhamasia, O. Tickoo, M. Paulitsch, “Error aligned uncertainty
optimization to improve model calibration”, will be submitted to either British Machine

Department or Event Name Vision Conference (BMVC) or European Conference on Computer Vision (ECCVW), 2022. intel.
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Thanks for you attention!

For additional question please contact
Intel Deutschland GmbH

ralf.graefe@intel.com

michael.paulitsch@intel.com

heiner.genzken@intel.com
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